Taylor Polynomials

Examples

1. Use the second order Taylor series to approximate $\sqrt{17}$.

Solution: The formula for the second order Taylor series expanded at $x=c$ is

$$
f(x) \approx f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2}(x-c)^{2}
$$

The closest square is 16 , so we can expand around there since we know $\sqrt{16}=4$. We have that $f(x)=\sqrt{x}, f^{\prime}(x)=\frac{1}{2 \sqrt{x}}, f^{\prime \prime}(x)=\frac{-1}{4 x \sqrt{x}}$. Plugging in $c=16$, we have that

$$
f(x) \approx 4+\frac{x-16}{8}-\frac{1}{512}(x-16)^{2} .
$$

Plugging in $x=17$, we have that

$$
\sqrt{17} \approx 4+\frac{1}{8}-\frac{1}{512} \approx 4.123
$$

2. Find the Taylor series for $x^{5}+3 x^{3}+2 x+10$.

Solution: Taylor series give you a polynomial approximation for your function. But if your function is already a polynomial, then it gives the same thing. Try it out and verify it by yourself! So the Taylor series is just $x^{5}+3 x^{3}+2 x+10$.

Problems

3. Use the second order approximation to $\sqrt[3]{28}$.

Solution: A close cube that we know is $3^{3}=27$. So we calculate the second order Taylor series expanded at $x=27$ to get

$$
\sqrt[3]{x} \approx 3+\frac{x-27}{27}-\frac{(x-27)^{2}}{2187}
$$

So plugging in 28 gives

$$
\sqrt[3]{28} \approx 3+\frac{1}{27}-\frac{1}{2187} \approx 3.036
$$

4. Use the second order approximation to find $\ln 1.1$.

Solution: We know that $\ln 1=1$. So we can expand out at $x=1$ to get

$$
\ln x \approx 0+(x-1)-\frac{(x-1)^{2}}{2}
$$

Thus, we have that $\ln 1.1 \approx(0.1)-\frac{0.1^{2}}{2}=0.095$.
5. Use the second order approximation to find $\sqrt{5}$.

Solution: We have that $\sqrt{4}=2$ and 4 is close to 5 so we expand there. We have that

$$
\sqrt{x} \approx 2+\frac{x-4}{4}-\frac{1}{64}(x-4)^{2} .
$$

Now we plug in 5 to get

$$
\sqrt{5} \approx 2+\frac{1}{4}-\frac{1}{64} \approx 2.234
$$

6. Use the second order approximation to find $e^{0.1}$.

Solution: We know that $e^{0}=1$ so we can expand around $x=0$. Doing so gives

$$
e^{x} \approx 1+x+\frac{x^{2}}{2}
$$

Thus, we have that $e^{0.1} \approx 1+0.1+0.1^{2} / 2=1.105$.
7. Use the second order approximation to find $\sec (0.1)$.

Solution: We know that $\sec (0)=1 / \cos (0)=1$. We can expand there using the fact that the first derivative is $\sec (x) \tan (x)$ and the second derivative is $\sec (x)\left(\tan ^{2}(x)+\right.$ $\left.\sec ^{2}(x)\right)$. Thus, we get that the Taylor series is

$$
\sec (x) \approx 1+\frac{x^{2}}{2}
$$

Thus, we have that $\sec (0.1) \approx 1+0.1^{2} / 2=1.005$.
8. Use the third order approximation to find $\sin (0.1)$.

Solution: We expand around 0 since $\sin 0=0$. We find that

$$
\sin x \approx x-\frac{x^{3}}{6}
$$

and so $\sin (0.1) \approx 0.1-0.1^{3} / 6=0.0998$.
9. Use the second order approximation to find $\cos (0.1)$.

Solution: Expanding at $x=0$ gives

$$
\cos (x) \approx 1-\frac{x^{2}}{2}
$$

Thus, $\cos (0.1) \approx 1-0.1^{2} / 2=0.995$.

Newton's Method

Examples

10. Find the roots of $f(x)=x^{3}-x+1$.

Solution: Taking the derivative, we get that the derivative is $3 x^{2}-1$. This has roots at $\pm 1 / \sqrt{3}$. When we plug in $1 / \sqrt{3}$, we get that $f(1 / \sqrt{3})=1-2 / 3 \sqrt{3}>0$. Thus, this function only has one zero because the local minimum at $x=1 / \sqrt{3}$ is positive.

Since $x=-1 / \sqrt{3}$ is a local maximum, we know that the zero must be $<-1 / \sqrt{3}$. We can start by guessing $x=-2$. The formula for Newton's method gives us

$$
x_{n}=x_{n-1}-\frac{f\left(x_{n-1}\right)}{f^{\prime}\left(x_{n-1}\right)}=x-\frac{3 x^{2}-1}{x^{3}-x+1} .
$$

Plugging in $x=-2$ gives us $\frac{-17}{11}$. So the root is approximately -1.5454 , the real root is -1.32 .

Problems

11. Use Newton's method to estimate $\sqrt[4]{16.32}$.

Solution: This value is a root of $x^{4}-16.32=0$. We can start at $x=2$ and using Newton's method gives us

$$
x^{\prime}=x-\frac{f(x)}{f^{\prime}(x)}=2-\frac{-.32}{4 \cdot 2^{3}}=2+0.01=2.01
$$

The real answer is about 2.0099 .
12. Find the critical points of $g(x)=\sin (x)-x^{2}$

Solution: We want to find when the derivative is 0 or when $f(x)=\cos (x)-2 x=0$. Taking the derivative again, we find that it is $-\sin (x)-2<0$ for all x. So this function is always decreasing and has a unique root. We plug in $x=0$ to start, then calculate

$$
x^{\prime}=x-\frac{f(x)}{f^{\prime}(x)}=-\frac{1}{-2}=\frac{1}{2} .
$$

The real solution is ≈ 0.45.
13. Find the critical points of $e^{x}+x^{2}$.

Solution: The critical points are when the derivative is 0 so $f(x)=e^{x}+2 x=0$. Taking the second derivative, we have that $f^{\prime}(x)=e^{x}+2>0$ so this is an always increasing function. Therefore, it will only have 1 zero. We plug in the only value that we know of $x=0$ and get

$$
x^{\prime}=x-\frac{f(x)}{f^{\prime}(x)}=0-\frac{1}{3}=-\frac{1}{3} .
$$

The real solution is ≈-0.35.
14. Find when $\cos x=x$.

Solution: Notice that when taking the derivative of $\cos x-x$, we get $\sin x-1 \leq 0$ so this is a decreasing function which has at most on zero. We start at $x=0$ to get the next point

$$
x^{\prime}=x-\frac{f(x)}{f^{\prime}(x)}=0-\frac{1}{-1}=1
$$

The real solution is ≈ 0.739.
15. Use Newton's method to estimate $\sqrt[3]{28}$.

Solution: We want to find the root of $x^{3}-28$. We guess $x=3$ and get that the next point is

$$
x^{\prime}=x-\frac{f(x)}{f^{\prime}(x)}=3-\frac{-1}{27}=\frac{82}{27} \approx 3.037
$$

The real solution is ≈ 3.0366.
16. Use Newton's method with two steps to estimate $\sqrt{5}$.

Solution: We want to find the root of $x^{2}-5=0$. The first guess is $x=2$ and the next point is

$$
x^{\prime}=2-\frac{-1}{4}=\frac{9}{4} .
$$

Doing that again, we get that the next point is

$$
x^{\prime}=\frac{9}{4}-\frac{81 / 16-5}{9 / 2} \approx 2.2361
$$

The real answer is approximately 2.23607 .
17. Use Newton's method to estimate $2^{0.1}$.

Solution: We can rewrite this as $2^{1 / 10}$ so we want to find a root of $x^{1} 0-2=0$. Using Newton's method with a guess of 1 gives us

$$
x^{\prime}=1-\frac{-1}{10}=1.1 .
$$

The real answer is ≈ 1.0718.

L'Hopital's Rule

Examples

18. Find $\lim _{x \rightarrow \infty}\left(1+\frac{1}{2 x}\right)^{3 x}$.

Solution: We use the trick of turning exponents into products by taking e to the \ln of the function. So doing this gives

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{2 x}\right)^{3 x}=\lim _{x \rightarrow \infty} \exp \left[\ln \left(1+\frac{1}{2 x}\right)^{3 x}\right]=\exp \left[\lim _{x \rightarrow \infty} 3 x \ln \left(1+\frac{1}{2 x}\right)\right] .
$$

Plugging in ∞ gives $\infty \cdot 0$ which is a product indeterminate and so we can turn this product into a quotient. Doing so gives

$$
\begin{aligned}
\lim _{x \rightarrow \infty} 3 x \ln \left(1+\frac{1}{2 x}\right)= & \lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{1}{2 x}\right)}{(3 x)^{-1}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{1+1 / 2 x}\left(-2(2 x)^{-2}\right)}{-3(3 x)^{-2}} \\
& =\lim _{x \rightarrow \infty} \frac{3}{2+\frac{1}{x}}=\frac{3}{2} .
\end{aligned}
$$

Thus the answer to the original limit is $e^{3 / 2}$.
19. Find $\lim _{x \rightarrow \infty}\left(x^{2}-\ln \sqrt{x}\right)$.

Solution: Plugging in ∞ gives $\infty-\infty$ which is indeterminate. We can't use L'Hopitals rule just yet as we need to express the answer as a quotient. We can write

$$
x^{2}-\ln \sqrt{x}=\frac{1}{x^{-2}}-\ln \sqrt{x}=\frac{1-x^{-2} \ln \sqrt{x}}{x^{-2}} .
$$

Thus in order to calculate the original limit, we need to calculate the limit of $x^{-2} \ln \sqrt{x}=\frac{\ln \sqrt{x}}{x^{2}}$. This is indeterminate by L'Hopital's rule and so we can calculate the derivative as

$$
\lim _{x \rightarrow \infty} \frac{\ln \sqrt{x}}{x^{2}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}}}{2 x}=\lim _{x \rightarrow \infty} \frac{1}{4 x^{2}}=0 .
$$

Plugging this back into our original equation, we have that

$$
\lim _{x \rightarrow \infty} x^{2}-\ln \sqrt{x}=\lim _{x \rightarrow \infty} \frac{1-x^{-2} \ln \sqrt{x}}{x^{-2}}=\frac{1-0}{0}=\infty .
$$

Problems

20. Find $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}$.

Solution: Plugging in $x=4$ gives $0 / 0$ which is indeterminate. Now we use LHopitals rule to get

$$
\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}=\lim _{x \rightarrow 4} \frac{1}{1 /(2 \sqrt{x})}=\lim _{x \rightarrow 4} 2 \sqrt{x}=4
$$

21. Find $\lim _{x \rightarrow 0} \frac{3^{x}-2^{x}}{x^{2}-x}$.

Solution: Plugging in 0 gives $0 / 0$ which is indeterminate, so we can use Lhopitals. This gives

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{3^{x}-2^{x}}{x^{2}-x}=\lim _{x \rightarrow 0} \frac{e^{x \ln 3}-e^{x \ln 2}}{x^{2}-x}=\lim _{x \rightarrow 0} \frac{\ln 3 \cdot e^{x \ln 3}-\ln 2 \cdot e^{x \ln 2}}{2 x-1} \\
=\frac{\ln 3-\ln 2}{-1}=\ln 2-\ln 3 .
\end{gathered}
$$

22. Find $\lim _{x \rightarrow 0} \frac{x \tan x}{\sin 3 x}$.

Solution: Plugging in $x=0$ gives $0 / 0$ so using Lhopitals gives

$$
\lim _{x \rightarrow 0} \frac{x \tan x}{\sin 3 x}=\lim _{x \rightarrow 0} \frac{x \sec ^{2}(x)+\tan x}{3 \cos (3 x)}=\frac{0}{3}=0 .
$$

23. Find $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x \tan x}$.

Solution: Plugging in 0 gives $0 / 0$ and so we can use LHopitals rule to get

$$
\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x \tan x}=\lim _{x \rightarrow 0} \frac{2 x \cos \left(x^{2}\right)}{x \sec ^{2}(x)+\tan x} .
$$

Plugging in 0 again gives $0 / 0$ yet again, so we use LHopital's again to get

$$
\lim _{x \rightarrow 0} \frac{2 x \cos \left(x^{2}\right)}{x \sec ^{2}(x)+\tan x}=\lim _{x \rightarrow 0} \frac{2 \cos x^{2}-4 x^{2} \sin x^{2}}{2 \sec ^{2}(x)+2 x \tan x \sec ^{2}(x)}=\frac{2-0}{2+0}=1 .
$$

24. Find $\lim _{x \rightarrow 0} \frac{x^{2} e^{x}}{\tan ^{2} x}$.

Solution: Plugging in 0 gives $0 / 0$ so we use LHopitals to get

$$
\lim _{x \rightarrow 0} \frac{x^{2} e^{x}}{\tan ^{2} x}=\lim _{x \rightarrow 0} \frac{2 x e^{x}+x^{2} e^{x}}{2 \tan x \sec ^{2} x} .
$$

Plugging in 0 again gives $0 / 0$ so we use LHopitals again to get

$$
\lim _{x \rightarrow 0} \frac{2 x e^{x}+x^{2} e^{x}}{2 \tan x \sec ^{2} x}=\lim _{x \rightarrow 0} \frac{x^{2} e^{x}+4 x e^{x}+2 e^{x}}{2 \tan x(2 \sec x \cdot \sec x \tan x)+2 \sec ^{4} x}=\frac{2}{2}=1 .
$$

25. Find $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-\sqrt{x+1}\right)$.

Solution: Plugging in ∞ gives $\infty-\infty$ which is an indeterminate. This is not a quotient so we can't use LHopital's yet. But we can try to multiply by the conjugate to get

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-\sqrt{x+1}\right)=\lim _{x \rightarrow \infty} \frac{x^{2}+1-(x+1)}{\sqrt{x^{2}+1}+\sqrt{x+1}}
$$

Now we plug in ∞ to get ∞ / ∞ so we can use LHopitals and get

$$
=\lim _{x \rightarrow \infty} \frac{2 x-1}{x / \sqrt{x^{2}+1}+1 /(2 \sqrt{x+1})}=\lim _{x \rightarrow \infty} \frac{2 x-1}{1 / \sqrt{1+1 / x^{2}}+1 /(2 \sqrt{x+1})}=\frac{\infty}{1+0}=\infty .
$$

Note that we could have solved it after multiplying by the conjugate by dividing the top and bottom by the largest power of x we saw, which was x^{2}. Doign so gives

$$
\operatorname{dim}_{x \rightarrow \infty} \frac{x^{2}-x}{\sqrt{x^{2}+1}+\sqrt{x+1}}=\lim _{x \rightarrow \infty} \frac{1-1 / x}{\sqrt{1 / x^{2}+1 / x^{4}}+\sqrt{1 / x^{3}+1 / x^{4}}}=\infty / 0=\infty .
$$

26. Find $\lim _{x \rightarrow 0^{+}} \ln x \cdot \tan x$.

Solution: Plugging in 0 gives $(-\infty) \cdot 0$. So, we can write it as

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\cot x}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-\csc ^{2}(x)}=\lim _{x \rightarrow 0^{+}} \frac{-\sin ^{2} x}{x} .
$$

Plugging in 0 gives $0 / 0$ so we can use LHopitals again to get

$$
=\lim _{x \rightarrow 0^{+}} \frac{-2 \sin x \cos x}{1}=0
$$

27. Find $\lim _{x \rightarrow 0^{+}} x^{\sin x}$.

Solution: We don't like having x raised to some function of x so we do our trick of taking e to the ln of the function. This gives

$$
\lim _{x \rightarrow 0^{+}} x^{\sin x}=\lim _{x \rightarrow 0^{+}} \exp \left(\ln x^{\sin x}\right)=\exp \left[\lim _{x \rightarrow 0^{+}} \sin x \ln x\right] .
$$

Calculating the inner limit gives

$$
\lim _{x \rightarrow 0^{+}} \sin x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\csc (x)}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-\cot (x) \csc (x)}=\lim _{x \rightarrow 0^{+}} \frac{-\sin ^{2}(x)}{\cos (x) x} .
$$

Plugging in 0 again gives $0 / 0$ so we use LHopitals again to get

$$
\lim _{x \rightarrow 0^{+}} \frac{-2 \sin x \cos x}{\cos x-x \sin x}=0
$$

So our original answer is $e^{0}=1$.

