
Math 10A with Professor Stankova
Worksheet, Discussion #12; Friday, 9/22/2017
GSI name: Roy Zhao

Taylor Polynomials

Examples

1. Use the second order Taylor series to approximate
√

17.

Solution: The formula for the second order Taylor series expanded at x = c is

f(x) ≈ f(c) + f ′(c)(x− c) +
f ′′(c)

2
(x− c)2.

The closest square is 16, so we can expand around there since we know
√

16 = 4. We
have that f(x) =

√
x, f ′(x) = 1

2
√
x
, f ′′(x) = −1

4x
√
x
. Plugging in c = 16, we have that

f(x) ≈ 4 +
x− 16

8
− 1

512
(x− 16)2.

Plugging in x = 17, we have that

√
17 ≈ 4 +

1

8
− 1

512
≈ 4.123.

2. Find the Taylor series for x5 + 3x3 + 2x + 10.

Solution: Taylor series give you a polynomial approximation for your function. But
if your function is already a polynomial, then it gives the same thing. Try it out and
verify it by yourself! So the Taylor series is just x5 + 3x3 + 2x + 10.

Problems

3. Use the second order approximation to 3
√

28.
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Solution: A close cube that we know is 33 = 27. So we calculate the second order
Taylor series expanded at x = 27 to get

3
√
x ≈ 3 +

x− 27

27
− (x− 27)2

2187
.

So plugging in 28 gives

3
√

28 ≈ 3 +
1

27
− 1

2187
≈ 3.036.

4. Use the second order approximation to find ln 1.1.

Solution: We know that ln 1 = 1. So we can expand out at x = 1 to get

lnx ≈ 0 + (x− 1)− (x− 1)2

2
.

Thus, we have that ln 1.1 ≈ (0.1)− 0.12

2
= 0.095.

5. Use the second order approximation to find
√

5.

Solution: We have that
√

4 = 2 and 4 is close to 5 so we expand there. We have
that √

x ≈ 2 +
x− 4

4
− 1

64
(x− 4)2.

Now we plug in 5 to get
√

5 ≈ 2 +
1

4
− 1

64
≈ 2.234.

6. Use the second order approximation to find e0.1.

Solution: We know that e0 = 1 so we can expand around x = 0. Doing so gives

ex ≈ 1 + x +
x2

2
.

Thus, we have that e0.1 ≈ 1 + 0.1 + 0.12/2 = 1.105.
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7. Use the second order approximation to find sec(0.1).

Solution: We know that sec(0) = 1/ cos(0) = 1. We can expand there using the fact
that the first derivative is sec(x) tan(x) and the second derivative is sec(x)(tan2(x)+
sec2(x)). Thus, we get that the Taylor series is

sec(x) ≈ 1 +
x2

2
.

Thus, we have that sec(0.1) ≈ 1 + 0.12/2 = 1.005.

8. Use the third order approximation to find sin(0.1).

Solution: We expand around 0 since sin 0 = 0. We find that

sinx ≈ x− x3

6
,

and so sin(0.1) ≈ 0.1− 0.13/6 = 0.0998.

9. Use the second order approximation to find cos(0.1).

Solution: Expanding at x = 0 gives

cos(x) ≈ 1− x2

2
.

Thus, cos(0.1) ≈ 1− 0.12/2 = 0.995.

Newton’s Method

Examples

10. Find the roots of f(x) = x3 − x + 1.

Solution: Taking the derivative, we get that the derivative is 3x2−1. This has roots
at ±1/

√
3. When we plug in 1/

√
3, we get that f(1/

√
3) = 1 − 2/3

√
3 > 0. Thus,

this function only has one zero because the local minimum at x = 1/
√

3 is positive.
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Since x = −1/
√

3 is a local maximum, we know that the zero must be < −1/
√

3.
We can start by guessing x = −2. The formula for Newton’s method gives us

xn = xn−1 −
f(xn−1)

f ′(xn−1)
= x− 3x2 − 1

x3 − x + 1
.

Plugging in x = −2 gives us −17
11

. So the root is approximately −1.5454, the real
root is −1.32.

Problems

11. Use Newton’s method to estimate 4
√

16.32.

Solution: This value is a root of x4 − 16.32 = 0. We can start at x = 2 and using
Newton’s method gives us

x′ = x− f(x)

f ′(x)
= 2− −.32

4 · 23
= 2 + 0.01 = 2.01.

The real answer is about 2.0099.

12. Find the critical points of g(x) = sin(x)− x2

Solution: We want to find when the derivative is 0 or when f(x) = cos(x)−2x = 0.
Taking the derivative again, we find that it is − sin(x) − 2 < 0 for all x. So this
function is always decreasing and has a unique root. We plug in x = 0 to start, then
calculate

x′ = x− f(x)

f ′(x)
= − 1

−2
=

1

2
.

The real solution is ≈ 0.45.

13. Find the critical points of ex + x2.

Solution: The critical points are when the derivative is 0 so f(x) = ex + 2x = 0.
Taking the second derivative, we have that f ′(x) = ex + 2 > 0 so this is an always
increasing function. Therefore, it will only have 1 zero. We plug in the only value
that we know of x = 0 and get

x′ = x− f(x)

f ′(x)
= 0− 1

3
= −1

3
.

The real solution is ≈ −0.35.
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14. Find when cosx = x.

Solution: Notice that when taking the derivative of cosx− x, we get sinx− 1 ≤ 0
so this is a decreasing function which has at most on zero. We start at x = 0 to get
the next point

x′ = x− f(x)

f ′(x)
= 0− 1

−1
= 1.

The real solution is ≈ 0.739.

15. Use Newton’s method to estimate 3
√

28.

Solution: We want to find the root of x3 − 28. We guess x = 3 and get that the
next point is

x′ = x− f(x)

f ′(x)
= 3− −1

27
=

82

27
≈ 3.037.

The real solution is ≈ 3.0366.

16. Use Newton’s method with two steps to estimate
√

5.

Solution: We want to find the root of x2 − 5 = 0. The first guess is x = 2 and the
next point is

x′ = 2− −1

4
=

9

4
.

Doing that again, we get that the next point is

x′ =
9

4
− 81/16− 5

9/2
≈ 2.2361.

The real answer is approximately 2.23607.

17. Use Newton’s method to estimate 20.1.

Solution: We can rewrite this as 21/10 so we want to find a root of x10 − 2 = 0.
Using Newton’s method with a guess of 1 gives us

x′ = 1− −1

10
= 1.1.

The real answer is ≈ 1.0718.
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L’Hopital’s Rule

Examples

18. Find lim
x→∞

(
1 +

1

2x

)3x

.

Solution: We use the trick of turning exponents into products by taking e to the ln
of the function. So doing this gives

lim
x→∞

(
1 +

1

2x

)3x

= lim
x→∞

exp

[
ln

(
1 +

1

2x

)3x
]

= exp

[
lim
x→∞

3x ln

(
1 +

1

2x

)]
.

Plugging in ∞ gives ∞· 0 which is a product indeterminate and so we can turn this
product into a quotient. Doing so gives

lim
x→∞

3x ln

(
1 +

1

2x

)
= lim

x→∞

ln
(
1 + 1

2x

)
(3x)−1

= lim
x→∞

1
1+1/2x

(−2(2x)−2)

−3(3x)−2

= lim
x→∞

3

2 + 1
x

=
3

2
.

Thus the answer to the original limit is e3/2.

19. Find lim
x→∞

(x2 − ln
√
x).

Solution: Plugging in ∞ gives ∞ − ∞ which is indeterminate. We can’t use
L’Hopitals rule just yet as we need to express the answer as a quotient. We can
write

x2 − ln
√
x =

1

x−2
− ln
√
x =

1− x−2 ln
√
x

x−2
.

Thus in order to calculate the original limit, we need to calculate the limit of
x−2 ln

√
x = ln

√
x

x2 . This is indeterminate by L’Hopital’s rule and so we can calculate
the derivative as

lim
x→∞

ln
√
x

x2
= lim

x→∞

1√
x
· 1
2
√
x

2x
= lim

x→∞

1

4x2
= 0.

Plugging this back into our original equation, we have that

lim
x→∞

x2 − ln
√
x = lim

x→∞

1− x−2 ln
√
x

x−2
=

1− 0

0
=∞.
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Problems

20. Find lim
x→4

x− 4√
x− 2

.

Solution: Plugging in x = 4 gives 0/0 which is indeterminate. Now we use LHopitals
rule to get

lim
x→4

x− 4√
x− 2

= lim
x→4

1

1/(2
√
x)

= lim
x→4

2
√
x = 4.

21. Find lim
x→0

3x − 2x

x2 − x
.

Solution: Plugging in 0 gives 0/0 which is indeterminate, so we can use Lhopitals.
This gives

lim
x→0

3x − 2x

x2 − x
= lim

x→0

ex ln 3 − ex ln 2

x2 − x
= lim

x→0

ln 3 · ex ln 3 − ln 2 · ex ln 2

2x− 1

=
ln 3− ln 2

−1
= ln 2− ln 3.

22. Find lim
x→0

x tanx

sin 3x
.

Solution: Plugging in x = 0 gives 0/0 so using Lhopitals gives

lim
x→0

x tanx

sin 3x
= lim

x→0

x sec2(x) + tan x

3 cos(3x)
=

0

3
= 0.

23. Find lim
x→0

sin(x2)

x tanx
.

Solution: Plugging in 0 gives 0/0 and so we can use LHopitals rule to get

lim
x→0

sin(x2)

x tanx
= lim

x→0

2x cos(x2)

x sec2(x) + tan x
.

Plugging in 0 again gives 0/0 yet again, so we use LHopital’s again to get

lim
x→0

2x cos(x2)

x sec2(x) + tan x
= lim

x→0

2 cosx2 − 4x2 sinx2

2 sec2(x) + 2x tanx sec2(x)
=

2− 0

2 + 0
= 1.
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24. Find lim
x→0

x2ex

tan2 x
.

Solution: Plugging in 0 gives 0/0 so we use LHopitals to get

lim
x→0

x2ex

tan2 x
= lim

x→0

2xex + x2ex

2 tanx sec2 x
.

Plugging in 0 again gives 0/0 so we use LHopitals again to get

lim
x→0

2xex + x2ex

2 tanx sec2 x
= lim

x→0

x2ex + 4xex + 2ex

2 tanx(2 secx · secx tanx) + 2 sec4 x
=

2

2
= 1.

25. Find lim
x→∞

(
√
x2 + 1−

√
x + 1).

Solution: Plugging in ∞ gives ∞ −∞ which is an indeterminate. This is not a
quotient so we can’t use LHopital’s yet. But we can try to multiply by the conjugate
to get

lim
x→∞

(
√
x2 + 1−

√
x + 1) = lim

x→∞

x2 + 1− (x + 1)√
x2 + 1 +

√
x + 1

.

Now we plug in ∞ to get ∞/∞ so we can use LHopitals and get

= lim
x→∞

2x− 1

x/
√
x2 + 1 + 1/(2

√
x + 1)

= lim
x→∞

2x− 1

1/
√

1 + 1/x2 + 1/(2
√
x + 1)

=
∞

1 + 0
=∞.

Note that we could have solved it after multiplying by the conjugate by dividing the
top and bottom by the largest power of x we saw, which was x2. Doign so gives

dimx→∞
x2 − x√

x2 + 1 +
√
x + 1

= lim
x→∞

1− 1/x√
1/x2 + 1/x4 +

√
1/x3 + 1/x4

=∞/0 =∞.

26. Find lim
x→0+

lnx · tanx.

Solution: Plugging in 0 gives (−∞) · 0. So, we can write it as

lim
x→0+

lnx

cotx
= lim

x→0+

1/x

− csc2(x)
= lim

x→0+

− sin2 x

x
.

Plugging in 0 gives 0/0 so we can use LHopitals again to get

= lim
x→0+

−2 sinx cosx

1
= 0.
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27. Find lim
x→0+

xsinx.

Solution: We don’t like having x raised to some function of x so we do our trick of
taking e to the ln of the function. This gives

lim
x→0+

xsinx = lim
x→0+

exp(lnxsinx) = exp

[
lim
x→0+

sinx lnx

]
.

Calculating the inner limit gives

lim
x→0+

sinx lnx = lim
x→0+

lnx

csc(x)
= lim

x→0+

1/x

− cot(x) csc(x)
= lim

x→0+

− sin2(x)

cos(x)x
.

Plugging in 0 again gives 0/0 so we use LHopitals again to get

lim
x→0+

−2 sinx cosx

cosx− x sinx
= 0.

So our original answer is e0 = 1.


